Sahand University Of Technology

 Advance Engineering Mathematics
J. Farzi

1. Using 3-digit floating-point arithmetic, apply the classical Gram-Schmidt algorithm to the set

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
1 \\
10^{-3} \\
10^{-3}
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{c}
1 \\
10^{-3} \\
0
\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{c}
1 \\
0 \\
10^{-3}
\end{array}\right)
$$

show that the resulted vectors are not orthogonal. Explain why? Use the modified Gram-Schmidt algorithm to obtain a set of orthogonal vectors.

Modified Gram-Schmidt Algorithm

For a linearly independent set $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\} \subset \mathcal{C}^{m \times 1}$, the GramSchmidt sequence can be alternately described as

$$
\mathbf{u}_{k}=\frac{\mathbf{E}_{k} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{x}_{k}}{\left\|\mathbf{E}_{k} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{x}_{k}\right\|} \text { with } \mathbf{E}_{1}=\mathbf{I}, \mathbf{E}_{i}=\mathbf{I}-\mathbf{u}_{i-1} \mathbf{u}_{i-1}^{*} \text { for } \dot{z}>1,
$$

and this sequence is generated by the following algorithm.

$$
\begin{array}{ll}
\text { For } k=1: & \mathbf{u}_{1} \leftarrow \mathbf{x}_{1} /\left\|\mathbf{x}_{1}\right\| \quad \text { and } \quad \mathbf{u}_{j} \leftarrow \mathbf{x}_{j} \text { for } j=2,3, \ldots, n \\
\text { For } k>1: & \mathbf{u}_{j} \leftarrow \mathbf{E}_{k} \mathbf{u}_{j}=\mathbf{u}_{j}-\left(\mathbf{u}_{k-1}^{*} \mathbf{u}_{j}\right) \mathbf{u}_{k-1} \text { for } j=k, k+1, \ldots, n \\
& \mathbf{u}_{k} \leftarrow \mathbf{u}_{k} /\left\|\mathbf{u}_{k}\right\|
\end{array}
$$

Sahand University Of Technology

J. Farzi

2. Show that the sets

$$
\left\{\frac{1}{\sqrt{\pi}}\right\} \cup\left\{\left.\sqrt{\frac{2}{\pi}} \cos n t \right\rvert\, n \in \mathbb{N}\right\}
$$

and

$$
\left\{\left.\sqrt{\frac{2}{\pi}} \sin n t \right\rvert\, n \in \mathbb{N}\right\}
$$

are both complete orthonormal sets in $L^{2}(0, \pi)$.
3. (Hermite Polynomials) Consider the Hilbert space

$$
H=\left\{f:\left.\mathbb{R} \rightarrow \mathbb{R}\left|\int_{-\infty}^{\infty} e^{-x^{2}}\right| f(x)\right|^{2} d x<\infty\right\}
$$

with the inner-product

$$
(f, g)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2}} f(x) g(x) d x
$$

(a) Show that $f_{n}(x)=x^{n}$ belongs to H for every $n \in\{0\} \cup \mathbb{N}$.
(b) Apply the Gram-Schmidt process to the linearly independent set $\left\{f_{n}\right\}$ to obtain an orthonormal set h_{n}. Define

$$
H_{n}(x)=\sqrt{2^{n} n!} h_{n}(x)
$$

Sahand University Of Technology

J. Farzi

These are the Hermite polynomials. Compute H_{0} and H_{1}.
(c) Prove Rodrigues' Formula:

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

4. Let $f, g \in L^{2}(-\pi, \pi)$ and let their Fourier series be given by

$$
\begin{aligned}
& f \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \\
& g \sim \frac{c_{0}}{2}+\sum_{n=1}^{\infty}\left(c_{n} \cos n t+d_{n} \sin n t\right)
\end{aligned}
$$

Show that

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) g(t) d t=\frac{a_{0} c_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} c_{n}+b_{n} d_{n}\right)
$$

5. Compute the Fourier series of the function:

$$
f(t)=\left\{\begin{array}{rl}
-1 & -\pi \leq t<0 \\
1 & 0<t \leq \pi
\end{array}\right.
$$

6. Compute the Fourier cosine series of the function $f(t)=\sin t$ on $[0, \pi]$.
7. (a) Compute the Fourier sine series and the Fourier cosine series of the function $f(t)=t$ on $[0, \pi]$.
(b) Evaluate:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { and } \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Sahand University Of Technology

J. Farzi

8. Compute the Fourier series of the function $f(t)=t$ on $[-\pi, \pi]$ and use it to compute the Fourier series for the function $f(t)=t^{2}$. Deduce that

$$
1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\cdots=\frac{\pi^{2}}{12}
$$

9. (a) Show that the function $f(t)=-\log \left|2 \sin \frac{t}{2}\right|$ is in $L^{1}(-\pi, \pi)$.
(b) For $t \neq 2 k \pi, k \in \mathbb{Z}$, show that

$$
-\log \left|2 \sin \frac{t}{2}\right|=\sum_{n=1}^{\infty} \frac{\cos n t}{n}
$$

(c) Deduce that

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\log 2
$$

(d) Show that

$$
-\log \left|2 \cos \frac{t}{2}\right|=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\cos n t}{n}
$$

(e) For $0<t<\pi$, show that

$$
\sum_{k=0}^{\infty} \frac{\cos (2 k+1) t}{2 k+1}=-\frac{1}{2} \log \tan \frac{t}{2}
$$

